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Photonic crystal fibre
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notes made at CLEO/QELS, 13th May 1991

“Photonic Bloch waves,” NATO ASI, Erice, Sicily, July 1993

1991
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A photonic band gap fibre

• light is trapped inside an 
enlarged hole by a 
photonic band gap in the 
cladding
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Stacking it up… 

1 mm capillary
(pure silica)

high index defect

low index
defect

rare-earth doped

birefringent
core
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~1800°C

draw

~1 mm

~0.03 mm

photonic
crystal fibre

…& drawing it down

• overall collapse ratios as 
large as ~10,000×

• solid silica outer 
cladding incorporated

• continuous holes as 
small as 25 nm 
demonstrated
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Squeezing it out: extrusion

• used successfully 
for polymers and 
silica, tellurite & 
chalcogenide
compound glasses

pasta wheel
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Nano-structurally diverse
hollow core

highly nonlinear small core
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endlessly single-mode

extruded supercontinuum
fibre (Schott SF6 glass)

square lattice

state-of-the-art hollow core
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To get things in scale…

fruit-fly

hollow
core PCF
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To avoid “holy” fibre confusion…
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…we call them:

photonic crystal fibre
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Theory & modelling
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β

Wavevectors …

• axial wavevector β  is conserved across 
every region of structure

t1  t12 /k π λ=
1k n

transverse
effective wavelength
in material 1
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Maxwell’s equations: k 2 eigenvalue

dielectric constant
of structure eigenvalue

transverse operators & vectors

( ) ( )( )1 2
p p pˆ ˆj j kβ ε β− ∇ + × ∇ + × = z r z H H

axial wavevector

[Hermitian]
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Maxwell’s equations: β 2 eigenvalue

2 2 2
p p p p p p p( ) ln ( )k ε ε β ∇ + + ∇ ×∇ × = r r H H

often solved using expansion in plane waves
or sets of orthogonal functions

vacuum wavevector
dielectric constant

of structure eigenvalue

transverse operators & vectors

[non-Hermitian]
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Triangular lattice PCF

• 45% air filling 
fraction

• silica:air index 
contrast 1.46:1

β

Birks et al, Electron.Lett. 31 (1941-1942) 1995
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Single-mode fibre strait-jacket

vacuum silica

evanesce
nt

propagating

Ge-doped silica
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(Hannibal Lecter)
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Bars, windows & cages
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Resonance & anti-resonance 
in nano-tube

anti-resonantresonantglass

air

light fills the tube only at specific angle/colour combinations

anti-resonant

glass
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white
light
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Kandinsky, Klee … or Tiffany?

Feng Luan 2002

• the wave nature of light “entangles” it in wavelength-
scale structures

• for different colours, a micro-tube of air (or a micro-web 
of glass) can act like:

the bar of a cage (when anti-resonant)
a cage or window (when resonant)

~0.1 mm

~25 mm of
holey fibre

microscope

lamp

d
is
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rt

e
d
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C

F
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We are keeping light “behind bars”

anti-resonant
bars

anti-resonant
windows

© Philip Russell, University of Bath
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Modal filtering
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Knight et al, OFC 1996 PD paper

the first photonic crystal fibre
far-field pattern when 

carrying green & red light

interhole spacing 2.3 µm

Endlessly single-mode PCF
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• fundamental mode cannot 
squeeze between air-holes

• higher-order modes can 
escape into cladding

anti-resonant bars
anti-resonant

windows
resonant
windows

Higher order modes are filtered away



27© Philip Russell, University of Bath

Guidance at filled-in hole

• 45% air filling 
fraction

• silica:air index 
contrast 1.46:1

β

Birks et al, Electron.Lett. 31 (1941-1942) 1995
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Axial refractive indices

• 45% air filling 
fraction

• silica:air index 
contrast 1.46:1

β
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Photonic band gaps at 
1% index contrast
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Photonic band gaps at 1% contrast
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Making an all-solid PCF

single mode
fibre

multimode
fibres

Argyros et al., Opt. Exp. 13 (309-314) 2005
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Transmission spectrum

wavelength  
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cladding rods
become resonant in
the visible

Argyros et al., Opt. Exp. 13 (309-314) 2005
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Mode patterns in cladding “rods”

wavelength  
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LP21 LP02 LP11

field patterns
measured in high
loss windows

Argyros et al., Opt. Exp. 13 (309-314) 2005
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Shifting zeros
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wavelength (µm)
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Knight et al, Phot Tech Lett, 12 (807-809) 2000
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As holes get bigger ...

… core becomes more & more isolated

… & starts to look like isolated strand of silica

800 nm

air
silica
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wavelength ( µm)

0.5 0.6 0.7 0.8 0.9 1.0
− 300

− 200

−100

0

100

200

300

(
V

/n
. k

G
D

p s
m

m
)

anomalous
normal

Comparison with silica strand in air

bulk silica
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Knight et al, Phot Tech Lett, 12 (807-809) 2000
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Dispersion control

1100 1200 1300 1400 1500 1600 1700

15

10

5

0

−5

−10

−15

−20

−25

di
sp

er
sio

n 
(p

s/
nm

.k
m

)

wavelength (nm)

Reeves et al., Nature 424 (511-515) 2003

control of 
dimensions 
to better than 
1% required

anomalous

normal

SMF
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dispersion & nonlinearity
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Nonlinear gain condition
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Effects of higher order dispersion

2o
2

2

( )( )
( 2)!

mm

m m
β ωβ ω

∞
−

≥

= Ω
−∑

( )gain Im 2Q Q Pγ = + 

6
6/ 2 / 24 / 720β β β2 4

2 4Ω + Ω + Ω

Reeves et al., Nature 424 (511-515) 2003
Biancalana et al., Phys. Rev. E 68 (046603) 2003
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White light lasers
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take solid-core PCF with zero 
dispersion point close to a
pulsed laser wavelength
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A sunlight laser: multiple rainbows

IR in (76 MHz
200 fsec, 2 
nJ)

PCF

visible spectrum

diffraction
grating

higher grating
orders

Ranka et al, Opt. Lett. 25 (25-27) 2000
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Applications of sunlight laser

• frequency metrology
• optical coherence 

tomography
• spectroscopy

… some 10,000× brighter than the sun, 
yielding more than 100 GW m–2sterad–1
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1 m 3 m

20 m 100 m

power (mW) power (mW)

power (mW) power (mW)

Microchip laser (600 ps, 1064 nm)
Wadsworth et al, Opt Exp 12 (299-309) 2004

PCF with ZDW at 1039 nm

6 µm

anomalous dispersion

30 mW average at 7.25 kHz 
= pulse energy 4.1 µJ & peak power 6.9 kW
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Nano-tapering
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how to achieve a zero dispersion 
wavelength at 532 nm?
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Why is it a problem?…

• very hard to make by fibre drawing
• very difficult to launch light into

Birks et al, Opt. Lett. 25 (1415-1417) 2000 

532 nm

dispersion at different
core diameters
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Heating & stretching…

∅ 700 nm core ∅ 500 nm core

average input laser power ~ 1.7 mW

∅ 3.1 µm core

Leon-Saval et al, Opt Exp 12 (2864) 2004

500 nm core
90 mm long
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pump light white light red filter orange filter blue filter

How it looks…
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∅ 700 nm core∅ 500 nm core ∅ 3.1 µm core

Leon-Saval et al, Opt Exp 12 (2864) 2004
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Photonic band gap guidance
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Guidance condition
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• silica:air index 
contrast 1.46:1

β



57© Philip Russell, University of Bath

Hollow core PBG fibres
Cregan et al, Science 285 (1537-1539) 1999 

guidance is typically
narrow-band

~25 mm of
holey fibre

microscope

lamp



58© Philip Russell, University of Bath

State-of-the-art HC PCF
Mangan et al, OFC 2004, paper PDP24

115 µm

20.5 µm

70 µm

1.7 dB/km at 1550 nm
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Near-field intensity distribution
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Mangan et al, OFC 2004, paper PDP24
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Attenuation
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Roberts et al., Opt. Exp. 13 (236-244) 2005
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Loss induced by mode crossings

Normalised propagation constant [ β·Λ ]
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blue shading
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light-in-glass
fraction
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A new window
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New telecommunications window?

1/λ scale

Mangan et al, OFC 2004, paper PDP24

PCF, light in 
glass 1%

B=50 µm

αIR = A exp(-B/λ)

all silica

hypothetical 
0.2 dB/km PCF

3~ λ −

4~ λ −

1800 nm 
0.1 dB/km

1.7 dB/km 
HC fiber

3~ λ −

1950 nm 
0.95 dB/km

Rayleigh
scattering

scattering

scattering
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Gas-laser interactions
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Capillaries always leak

hole radius

2 2

3
1
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1
6.8 (
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1

)
)

s (m n
a n

λ− +
=

−

wavelength (850 nm)

refractive
index (1.46)

Renn et al., J Vac Sci Tech 16 (3859) 1998a

reducing radius from 
100 µm to 5 µm 

increases loss 8000×
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Nonlinear figure-of-merit

loss

eff

L
A

λ
how far does the light travel

before it is absorbed?wavelength

area of light
mode (small is good)
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10 µm bore

1×

1.7 dB/km PCF

area dominated

300 dB/km PCF

area dominated

Benabid et al, Science 298 (399) 2002

Comparison

>1,000,000×

>10,000×

1550 nm

Rayleigh

loss dominated
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Stimulated Raman scattering
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Molecular oscillations in H2

vibrational 
(usually dominant)

rotational
(usually much weaker)

125 THz 18 THz

Q01(1) S00(1) 

© Philip Russell, University of Bath
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Hollow core PCF for rotational SRS

anti-Stokes pump

Stokes

rotational

very high attenuation 
for vibrational Stokes

Benabid et al, PRL 93 (123903) 2004

18 THz

125 THz

© Philip Russell, University of Bath
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SRS conversion

• single-pass threshold 
at energy 1,000,000 
times lower (35 m)

• near-perfect quantum 
efficiency achieved (2.9 
m)

hydrogen pressure 7 bar
loss at second Stokes is 0.6 dB/m

multi-pass: Meng et al., 
Opt. Lett. 27 (1226) 2002

35 m

coupled energy (nJ)
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2.9 m

Benabid et al, PRL 93 (123903) 2004

© Philip Russell, University of Bath
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Catching the dancers
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Laser tweezer
forces

trapping
forces

propulsive
force

laser
beam

© Philip Russell, University of Bath
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Catching the 
dancers

© Philip Russell, University of Bath
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Piped particle

• 20 µm diameter hollow core
• 5 µm diameter polystyrene spheres
• 80 mW at 514 nm
• terminal velocity 1.5 cm/sec 

Benabid et al, Opt. Exp. 10 (1195-1203) 2002

© Philip Russell, University of Bath
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Finally…
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Impacts and prospects
transforming fibre optics
intra-fibre devices
biomedical/chemical sensors

cold atom guidance
particle/cell guidance
gas-laser interactions

dispersion control
solitons at new wavelengths
transforming nonlinear optics

supercontinuum generation
frequency metrology
non-silica glass fibres

polymer fibres
fibre lasers & amplifiers
high power & energy transmission
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Photonics & Photonic Materials Group
12th October 2004


