© Philip Russell, University of Bath

N

CRYSTAL
rsaeasem FIBRES

microscop‘T.'_- <
3 ¥ L}

Philip Russell

Department of Physics
University of Bath

(KEPMG www.bath.ac.uk/physics/groups/ppmg




© Philip Russell, University of Bath

Contents

introduction
# photonic crystal fibre [3]
:  theory & modelling [13]
bars, windows and cages [19]

review papers: solid core

Science 299 (358-362) 2003 = modal filtering [24]
Nature 424 (847-851) 2003 = PBGs at 1% contrast [29]

# shifting zeros [34]

dispersion & nonlinearity [39]

# Wwhite light lasers [44]

# nano-tapering [49]

hollow core

# photonic band gap guidance [55]

# anew window [62]

# gas-laser interactions [64]
stimulated Raman scattering [68]
catching the dancers [76]

flnally [77]




© Philip Russell, University of Bath

Photonic crystal fibre
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1991

notes made at CLEO/QELS, 13th May 1991
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Stacking it up...

1 mm capillary
(pure silica)

low index
defect

rare-earth doped

high index defect
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...& drawing it down

overall collapse ratios as
large as ~10,000x

solid silica outer
cladding incorporated

continuous holes as

small as 25 nm
~1800°C
I I demonstrated

photonic
draw B crystal fibre

OXPPMG ~0.03 mm
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Squeezing it out: extrusion

pasta wheel

used successfully
for polymers and
silica, tellurite &
chalcogenide
compound glasses
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extruded supercontinuum
fibre (Schott SF6 glass)

Nano-structurally diverse

highly nonlinear small core

hollow core

Shlazephoonc RN

soet 0ol

polarisation
maintaining

state-of-the-art hollow core

18rm

endlessly single-nr_lc-)de
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To get things in scale...
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To avoid “holy” fibre confusion...

St Nicolas
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...we call them:

photonic
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Theory & modelling
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Wavevectors ...

kn,

transverse
effective wavelength
« axial wavevector [ is conserved across in material 1
every region of structure
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Maxwell’s equations: k2 eigenvalue

[Hermitian]

dielectric constant
of structure eigenvalue

axial wavevector K

\2 +],6’z )(V, -I—],BZ ><H:k2H
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Maxwell’s equations: 52 eigenvalue

[non-Hermitian]

dielectric constant

vacuum wavevector of structure eigenvalue

/ / \

[Vg +k25(rp)+Vp Ine(r))xV, x] H, = ,Bsz

often solved using expansion in plane waves
or sets of orthogonal functions




© Philip Russell, University of Bath

Triangular lattice PCF

Birks et al, Electron.Lett. 31 (1941-1942) 1995
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Single-mode fibre strait-jacket

Anthony Hopkins
(Hannibal Lecter)
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Bars, windows & cages
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Resonance & anti-resonance
in nano-tube

/

anti-resonant  glass resonant anti-resonant

I SS—
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fibre length not to scale
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g j SBATH




© Philip Russell, University of Bath

Kandinsky, Klee ... or Tiffany?

N

distorted PCF

microscope

‘.\R‘)‘
\ \.... .
¥ . L
b
Feng Luan 2002 !

~25 mm of
holey fibre
the wave nature of light “entangles” it in wavelength-
scale structures e

for different colours, a micro-tube of air (or a micro-web @m

of glass) can act like:
the bar of a cage (when anti-resonant)
a cage or window (when resonant)

lamp

UNIVERSITY OF

(X €5 BATH
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We are keeping light “behind bars”

anti-resonant anti-resonant
- windows bars
CXPPMG
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Modal filtering




© Philip Russell, University of Bath

Endlessly single-mode PCF

Knight et al, OFC 1996 PD paper

interhole spacing 2.3 ym

University of Bath

far-field pattern when
the first photonic crystal fibre carrying green & red light
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Higher order modes are filtered away

anti-resonant bars
anti-resonant
windows

™~

 fundamental mode cannot
squeeze between air-holes

resonant
windows

\
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higher-order modes can
escape into cladding
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Guidance at filled-in hole

Birks et al, Electron.Lett. 31 (1941-1942) 1995
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guidance by modified

total internal reflection™\ “
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Axial refractive indices
Birks et al, Electron.Lett. 31 (1941-1942) 1995

central band-gap indices PCF cladding
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Photonic band gaps at

1% index contrast
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Photonic band gaps at 1% contrast

bars can be .
resonant or Ge-doped silica

anti-resonant (~1% above silica)

anti-resonant
windows

™~

pure silica
glass matrix
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Making an all-solid PCF

Argyros et al., Opt. Exp. 13 (309-314) 2005
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Transmission spectrum

Argyros et al., Opt. Exp. 13 (309-314) 2005

500nm  550nm  600nm
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the visible

£
o
S
c
9
/)]
R
£
n
C
©
|
s
©
QO
R
©
£
| .
(@)
c

000 1100
wavelength




© Philip Russell, University of Bath

Mode patterns in cladding “rods”

Argyros et al., Opt. Exp. 13 (309-314) 2005

field patterns
measured in high
loss windows
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Shifting zeros




© Philip Russell, University of Bath

Dispersion of 800 nm core PCF

Knight et al, Phot Tech Lett, 12 (807-809) 2000

second
~. ZDW with

opposite

slope
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As holes get bigger ...

... core becomes more & more isolated

... & starts to look like isolated strand of silica
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Comparison with silica strand in air

Knight et al, Phot Tech Lett, 12 (807-809) 2000

silica webs reduce
GVD in PCF

silica strand
(computed)

anomalous

normal
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Dispersion control
Reeves et al., Nature 424 (511-515) 2003

anomalous

normal

control of
dimensions
to better than
1% required

—~
=
=
=
=
~
v
Q.
——
c
.9
%)
| S
Q
Q.
=
S

1100 1200 1300 1400 1500 1600 1700

wavelength (nm)




© Philip Russell, University of Bath

dispersion & nonlinearity
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Nonlinear gain condition

wavevector

Lo, +Q)= B, +v,' QA ﬁ; Q%ZQ;’f

pump

@, —Q @, + <

0

nonlinear coefficient
T 1 power

S
—4y P

QZ

for nonlinear gain: 132 <
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Effects of higher order dispersion

Reeves et al., Nature 424 (5611-515) 2003
Biancalana et al., Phys. Rev. E 68 (046603) 2003

B (0)= 3 Pul@)

m>2 (m _2)'

gain = Im

No(o+2rP),

/
BOY 2+ B.OY 24+ O /720
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two gain bands
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e two gain bands
134 < 09 ﬂ6 I O widely spaced in

frequency

normal
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White light lasers
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take solid-core PCF with zero
dispersion point close to a

pulsed laser wavelength
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A sunlight laser: multiple rainbows

Ranka et al, Opt. Lett. 25 (25-27) 2000

diffraction

gratinl higher grating

orders
visible spectrum —

Ha

m IRin (76 MHz
200 fsec, 2

University of Bath 2002 nJ)

b ¥
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,000x brighte
re than 100 C

Applications of sunlight laser

 frequency metrology

e optical coherence
tomography

e spectroscopy

1 UNIVERSITY OF
4 o)

@55 BATH
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Microchip laser (600 ps, 1064 nm)

Wadsworth et al, Opt Exp 12 (299-309) 2004

30 mW average at 7.25 kHz
= pulse energy 4.1 uJ & peak power 6.9 kW

PCF mt(w%suv@a% 039 nm
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Nano-tapering
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how to achieve a zero dispersion
wavelength at 532 nm?
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Why is it a problem?...

Birks et al, Opt. Lett. 25 (1415-1417) 2000

I ||
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core diameters
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e very hard to make by fibre drawing
e very difficult to launch light into
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Heating & stretching...

52
Leon-Saval et al, Opt Exp 12 (2864) 2004

<& 3.1 ym core & 700 nm core & 500 nm core

| ! i : 1 :
500 nm core
input endface 90 mm long

(3.1 ym core)

output power (dB)

taper waist

- - 1 1 I 1 I 1 l 1 I L
(submicron core) 550 650 750 850 950

wavelength (nm)

average input laser power ~ 1.7 mW
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How it looks...

pump light white light red filter orange filter blue filter
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Leon-Saval et al, Opt Exp 12 (2864) 2004
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Photonic band gap guidance
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Guidance condition
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Hollow core PBG fibres
Cregan et al, Science 285 (15637-1539) 1999

University of Bath

microscope

Ky X3, S00
~25 mm of

holey fibre

guidance is typically
narrow-band

 —

lamp
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Near-field intensity distribution

Mangan et al, OFC 2004, paper PDP24
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Attenuation

Roberts et al., Opt. Exp. 13 (236-244) 2005
30 -
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Loss induced by mode crossings

Roberts et al., Opt. Exp. 13 (236-244) 2005
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A new window
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New telecommunications window?

Mangan et al, OFC 2004, paper PDP24

all silica
10.00

1.7 dB/km |
HC fiber PCF, light in
: glass 1%

1950 nm
0.95 dB/km

hypothetical scattering
0.2 dB/km PCF
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B=50 um scattering
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Gas-laser interactions
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Capillaries always leak

Renn et al., J Vac Sci Tech 16 (3859) 1998

silica glass capillary

leakage
wavelength (850 nm)

\
AAIn® +1

loss (m_l) — TP reducing radius from
6.8a’(n” —1) 100 um to 5 um

/ \ increases loss 8000x
refractive

hole radius index (1.46)
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Nonlinear figure-of-merit

how far does the light travel

wavelength before it is absorbed?

AN

AL~

OSS

Aff
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area of light
mode (small is good)
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Comparison

10 um bore

N —

>1 ,000,000"

Benabid et al, Science 298 (399) 2002

1550 nm

1 7 dB/km PCF

area dommated

................................. 3..0..0..._d.Bl_k_m.__E.CE ................

Rayleigh

20 30 40
bore radius (Lum)
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Stimulated Raman scattering




© Philip Russell, University of Bath

Molecular oscillations in H,

/

vibrational rotational
(usually dominant) (usually much weaker)

125 THz
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Hollow core PCF for rotational SRS

Benabid et al, PRL 93 (123903) 2004

very high attenuation
for vibrational Stokes

rotational

anti-Stokes

/

pump

125 THz

«—~150 nm —

1000 1050 1100 1150

1

Wavelength (nm)
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SRS conversion

Benabid et al, PRL 93 (123903) 2004

single-pass threshold
at energy 1,000,000
times lower (35 m)
near-perfect quantum
efficiency achieved (2.9
m)

c
9
n
R
£
n
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©
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s

multi-pass: Meng et al.,
Opt. Lett. 27 (1226) 2002

Bl il - 1
20 40

coupled energy (nJ)

hydrogen pressure 7 bar
loss at second Stokes is 0.6 dB/m
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Catching the dancers
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Laser tweezer
forces

trapping
forces
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Catching the
dancers

hollow core PCF

piezoelectric
transducer
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Piped particle

Benabid et al, Opt. Exp. 10 (1195-1203) 2002

20 um diameter hollow core

5 um diameter polystyrene spheres
80 mW at 514 nm

terminal velocity 1.5 cm/sec
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Finally...
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transforming fibre optics
intra-fibre devices
biomedical/chemical sensors

cold atom guidance
particle/cell guidance
gas-laser interactions

dispersion control

solitons at new wavelengths
transforming nonlinear optics

supercontinuum generation
frequency metrology
non-silica glass fibres

polymer fibres
fibre lasers & amplifiers
high power & energy transmission







