Seminars
Thu |
Superconducting Nanowire Single-Photon DetectorsDr. Andrew J. Kerman, MIT Lincoln Laboratory, Lexington, MA | |
Co-sponsored by the New England Section of OSA | ||
Abstract: I will discuss our ongoing work at MIT on single-photon detectors based on superconducting NbN nanowires. These nanometer-scale devices exploit the ultrafast nonequilibrium electronic photoresponse in ultrathin films of the highly disordered superconductor NbN to produce a photon counter of unprecedented speed and sensitivity. With better than 30 ps timing resolution, ~few ns reset time after a detection, and high detection efficiency (>85% demonstrated at 1550 nm), these devices show promise as an enabling technology in a number of areas, such as high data rate interplanetary optical communications, spectroscopy of ultrafast quantum phenomena in biological and solid-state physics, quantum key distribution and quantum computation, astrophysics, laser radar, and high-speed noninvasive digital circuit testing. Biography: Andrew J. Kerman was born in Winchester, MA on September 7, 1971. He received a B.S. degree with honors in physics and applied mathematics from Williams College in 1993. After a year as a research assistant in atomic and condensed-matter physics at Harvard University under professor Isaac Silvera, he began a Ph.D. in atomic physics and atomic laser cooling and trapping at Stanford University with professor Steven Chu, graduating in 2002. He did postdoctoral work at Yale University with professor David DeMille on quantum computing with ultracold polar molecules, as well as at MIT with professor Wolfgang Ketterle on ultracold fermionic atoms. In 2004, he joined the optical communications technology group at Lincoln Laboratory, in which he conducts ongoing research on superconducting nanowire single-photon detectors. In 2006, he began working with the analog device technology group at MIT Lincoln Laboratory on quantum computing with superconducting Josephson-junction-based qubits. Location: MIT Lincoln Laboratory |